Regional and cellular gene expression changes in human Huntington's disease brain.

نویسندگان

  • Angela Hodges
  • Andrew D Strand
  • Aaron K Aragaki
  • Alexandre Kuhn
  • Thierry Sengstag
  • Gareth Hughes
  • Lyn A Elliston
  • Cathy Hartog
  • Darlene R Goldstein
  • Doris Thu
  • Zane R Hollingsworth
  • Francois Collin
  • Beth Synek
  • Peter A Holmans
  • Anne B Young
  • Nancy S Wexler
  • Mauro Delorenzi
  • Charles Kooperberg
  • Sarah J Augood
  • Richard L M Faull
  • James M Olson
  • Lesley Jones
  • Ruth Luthi-Carter
چکیده

Huntington's disease (HD) pathology is well understood at a histological level but a comprehensive molecular analysis of the effect of the disease in the human brain has not previously been available. To elucidate the molecular phenotype of HD on a genome-wide scale, we compared mRNA profiles from 44 human HD brains with those from 36 unaffected controls using microarray analysis. Four brain regions were analyzed: caudate nucleus, cerebellum, prefrontal association cortex [Brodmann's area 9 (BA9)] and motor cortex [Brodmann's area 4 (BA4)]. The greatest number and magnitude of differentially expressed mRNAs were detected in the caudate nucleus, followed by motor cortex, then cerebellum. Thus, the molecular phenotype of HD generally parallels established neuropathology. Surprisingly, no mRNA changes were detected in prefrontal association cortex, thereby revealing subtleties of pathology not previously disclosed by histological methods. To establish that the observed changes were not simply the result of cell loss, we examined mRNA levels in laser-capture microdissected neurons from Grade 1 HD caudate compared to control. These analyses confirmed changes in expression seen in tissue homogenates; we thus conclude that mRNA changes are not attributable to cell loss alone. These data from bona fide HD brains comprise an important reference for hypotheses related to HD and other neurodegenerative diseases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brain Regions Showing White Matter Loss in Huntington’s Disease Are Enriched for Synaptic and Metabolic Genes

BACKGROUND The earliest white matter changes in Huntington's disease are seen before disease onset in the premanifest stage around the striatum, within the corpus callosum, and in posterior white matter tracts. While experimental evidence suggests that these changes may be related to abnormal gene transcription, we lack an understanding of the biological processes driving this regional vulnerab...

متن کامل

The Effects of Kainic Acid-Induced Seizure on Gene Expression of Brain Neurotransmitter Receptors in Mice Using RT2 PCR Array

Introduction: Kainic acid (KA) induces neuropathological changes in specific regions of the mouse hippocampus comparable to changes seen in patients with chronic temporal lobe epilepsy (TLE). According to different studies, the expression of a number of genes are altered in the adult rat hippocampus after status epilepticus (SE) induced by KA. This study aimed to quantitatively evaluate changes...

متن کامل

Dysregulation of gene expression in the R6/2 model of polyglutamine disease: parallel changes in muscle and brain.

Previous analyses of gene expression in a mouse model of Huntington's disease (R6/2) indicated that an N-terminal fragment of mutant huntingtin causes downregulation of striatal signaling genes and particularly those normally induced by cAMP and retinoic acid. The present study expands the regional and temporal scope of this previous work by assessing whether similar changes occur in other brai...

متن کامل

Role of Propolis as a pharmaceutical candidate on interleukin-1β proinflammatory cytokine expression in Alzheimer's rat

Background: One of the important factors that play a key role in the pathogenesis of Alzheimer's disease (AD) is inflammatory processes leading to impaired expression of inflammatory cytokines such as interleukin-6, TNF-α, and interleukin-1β (IL-1β). Propolis, as a therapeutic compound, has anti-inflammatory and antioxidant properties. Therefore, the aim of the present study was to investigate ...

متن کامل

Global gene expression analysis using microarray to study differential vulnerability to neurodegeneration

Neurodegenerative disorders such as Parkinson’s disease, motor neuron disease and Alzheimer’s disease is characterized by loss of specific cells within certain regions of the brain. One of the most compelling questions is to determine why specific cell populations are vulnerable to neurodegeneration. We addressed this question by studying global gene expression changes using an animal model of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human molecular genetics

دوره 15 6  شماره 

صفحات  -

تاریخ انتشار 2006